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Abstract

With the rapid advancement and popularity of geospatial technologies such as 
location-aware smartphones, mobile maps, etc., average citizens nowadays can eas-
ily contribute georeferenced wildlife data (e.g., wildlife sightings). Due to the wide 
spread of human settlements and lengthy living histories of citizens in their local 
areas, citizen-contributed wildlife data could cover large geographic areas over long 
time spans. Citizen science thus provides great opportunities for collecting wildlife 
data of extensive spatiotemporal coverage for wildlife habitat assessment. However, 
citizen-contributed wildlife data may be subject to data quality issues, for example, 
imprecise spatial position and biased spatial coverage. These issues need to be 
accounted for when using citizen-contributed data for wildlife habitat assessment. 
Geovisualization and geospatial analysis capabilities provisioned by geographic 
information systems (GISs) can be adopted to tackle such data quality issues. This 
chapter offers an overview of citizen science as a means of collecting wildlife data, 
the roles of GIS to tackle the data quality issues, and the integration of citizen sci-
ence and GIS for wildlife habitat assessment. A case study of habitat assessment for 
the black-and-white snub-nosed monkey (Rhinopithecus bieti) using R. bieti sight-
ings elicited from local villagers in Yunnan, China, is presented as a demonstration.

Keywords: citizen observers, local villagers, wildlife sightings, geovisualization 
interview, habitat suitability mapping, data quality, black-and-white snub-nosed 
monkey (Rhinopithecus bieti)

1. Introduction

Habitats provide resources such as food, shelter, potential nesting sites, and 
mates for wildlife to achieve survival and reproduction [1]. Understanding the 
requirements or preferences of wildlife on their habitats and assessing the quality 
of wildlife habitat is of great importance for conservation biologists and conserva-
tion managers [2]. For example, wildlife habitat assessment supports conservation 
practices such as ex situ or reintroduction and restoration conservation, predicting 
risk of invasive species, systematic conservation planning, assessing threats, and 
setting conservation priorities [3–6].

One approach to assessing wildlife habitat quality is to predict wildlife habitat 
suitability maps indicating the spatial variation of habitat suitability [7]. Habitat 
suitability mapping is often carried out in a geographic information system (GIS) [8]. 
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Conceptually, spatial prediction of wildlife habitat suitability requires GIS data layers 
characterizing the environmental conditions (environmental data) and knowledge 
on the relationship between wildlife habitat suitability and environmental condi-
tions. Based on the relationship and the environmental conditions at a location (e.g., 
a pixel), the in situ habitat suitability can be inferred. Inferring habitat suitability 
at every location in the study area of interest results in a suitability map [7]. Such 
a habitat suitability map can then be used to assess the spatial variation of wildlife 
habitat quality and to support conservation. With the rapid development of geospa-
tial technologies, environmental data for characterizing environmental conditions 
are becoming abundant and increasingly available [9, 10]. The key for wildlife habitat 
assessment through habitat suitability mapping therefore lies in obtaining knowledge 
on the relationship between wildlife habitat suitability and environmental conditions 
(environmental niche).

Data-driven approaches are most commonly adopted in deriving the relationship 
between wildlife habitat suitability and environmental conditions (environmental 
niche modeling) [7]. Data-driven approaches for environmental niche modeling 
require wildlife data indicating habitat use, for example, abundance data, presence 
and/or absence data. Wildlife data are overlaid with environmental data layers to 
extract the environmental conditions at locations where habitat use occurs. The 
relationship between wildlife habitat suitability and environmental conditions 
can then be derived through statistical analysis, machine learning, data mining, or 
other modeling techniques [7]. Thus, wildlife data become the key to deriving the 
relationship between habitat suitability and environmental conditions for mapping 
wildlife habitat suitability for wildlife habitat assessment.

Traditionally, wildlife data are collected using various techniques such as field 
observation, radio telemetry, infrared trapping cameras, and global positioning 
system (GPS) collars [11, 12]. Accurate wildlife data can be collected through these 
techniques, but admittedly these techniques are also somewhat expensive to deploy 
[13]. The high cost may prevent these techniques from being used in wildlife data 
collection, particularly for areas and projects with limited budget support. Besides, 
some of these techniques (e.g., field observation and GPS collars) are logistically 
difficult for areas with rugged terrains and limited accessibility [13]. Low-cost 
techniques such as trailing wildlife markings and interviewing local people about 
wildlife sightings through questionnaires are also used for wildlife data collection, 
but wildlife data collected with these techniques can be of low quality (e.g., inac-
curate spatial location and/or time) [14, 15]. Cost-effective methods for collecting 
wildlife data of satisfactory quality are ideal for wildlife habitat assessment and 
sustainable conservation given that much of the world’s biodiversity occurs in the 
world’s poorest and remote countries [16].

Local residents were proven to be a cost-effective source of obtaining wildlife 
data [17, 18]. Many local residents, such as those living in remote rural areas and 
particularly those whose livelihoods are closely linked to ecosystem services  
(e.g., subsistence farmers, shepherds, and hunters), spend a great deal of time 
in the field. They encounter wildlife in its natural environment and, as a result, 
accumulate a rich knowledge about the wildlife habitat use. Wildlife data elicited 
from local residents at relatively low cost, although may be subject to data quality 
issues (e.g., data credibility, positional accuracy, spatial bias, etc.), could be used 
to support and sustain conservation programs with limited budget.

From a broader perspective, the increasing availability of citizen-contributed 
data accompanied by the advancements in GIS has created the opportunity to make 
full use of citizen science to address many real-world problems. On the one hand, 
citizen-contributed data have become increasingly available with the resurrected 
popularity of citizen science [19] and the emerging phenomenon of volunteered 
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geographic information (VGI) [20]. One prominent example is the eBird citizen 
science project that is driven by bird watchers and documenting bird species  
across the globe [21]. On the other hand, the advancements in GIS capabilities  
(e.g., geovisualization and spatial analysis) have made it possible to accommodate 
the data quality issues associated with citizen-contributed data to make use of such 
data for scientific inquires [22, 23].

This chapter offers an overview of citizen science for wildlife data collection 
and its integration with GIS for wildlife habitat assessment. A case study of habitat 
assessment for the black-and-white snub-nosed monkey (Rhinopithecus bieti) using 
data contributed by local residents in Yunnan, China, is presented as an illustration.

2. Citizen science for wildlife data collection

2.1 Citizen science

The term citizen science was formally added to the Oxford English Dictionary 
only recently in 2014 [24], referring to “Scientific work undertaken by members of 
the general public, often in collaboration with or under the direction of professional 
scientists and scientific institutions” [25]. Nonetheless, citizen science has been 
practiced for centuries, long before scientist slowly became a profession throughout 
the seventeenth to nineteenth centuries [24]. For example [26], Benjamin Franklin 
(1706–1790), as a physicist, was famous for his discoveries and theories regarding 
electricity while he was also a printer, diplomat, and politician; Charles Darwin 
(1809–1888) as a biologist was best known for his contributions to the theories of 
evolution, but on the Beagle voyage, he was sailing as an unpaid companion, not as 
a professional scientist. Even after the scientist-as-profession paradigm has been well 
established, average citizens continue to engage in scientific work at various levels 
of involvement [27]: contributory where citizens mostly contribute to data collec-
tion, collaborative where citizens also participate in data analysis, and co-created 
where citizens get involved at all stages of the project including conceiving and 
designing the research. Exemplary long-running citizen science projects related to 
wildlife population monitoring are the Christmas Bird Count (CBC) established 
in 1900 [28] and the Breeding Bird Survey (BBS) established in 1965 [29] for 
monitoring bird species in North America. Data contributed by participants in such 
citizen projects are now supporting wildlife population trends monitoring [30] and 
decision-making in conservation [31].

The rapid advancements of geospatial information technologies in the last 
decade have greatly prompted the flourish of citizen science. Location-aware 
portable devices constantly connected to the Internet (e.g., GPS-enabled smart 
phones) are now commonplace. Average citizens thus can conveniently contribute 
georeferenced wildlife observations using such devices via social media, mobile 
map, citizen science project mobile apps, etc. [26, 32, 33]. From a geographic and 
GIS perspective, citizen science involving geospatial data generation (e.g., wildlife 
sightings with location information) is called “geographic citizen science” [34] 
and the georeferenced wildlife observations are a form of VGI [20, 34]. Due to the 
increasing availability of enabling technologies, millions of citizens across the world 
are participating in citizen science projects and many of them are contributing 
large volumes of wildlife observations on a daily basis. Interested readers can check 
out a wide range of ongoing citizen science projects (not limited to wildlife-related 
projects) at scistarter.com and search for specific projects by topic and/or loca-
tion. As of the time of writing, searching projects at scistarter.com by the topic 
“Animals,” “Birds,” and “Insects & Pollinators” returned 382, 162, and 190 projects, 
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respectively. As a prominent example, the eBird project [21, 35], launched in 2002 
by the Ornithology Lab at Cornell University and the National Audubon Society, 
as of November 2016, has engaged over 330,000 bird watchers from more than 
250 countries who have reported observations of over 10,300 bird species. As of 
June 2018, eBird has accumulated over 500 million bird observations in its global 
database; in recent years, there have been more than 100 million bird observations 
added to the database each year.

Wildlife data contributed by participants in such citizen science projects are a 
form of geospatial big data [36, 37]. Complex patterns can be discovered from such 
intensive data through visualizations, simulations, data mining, and various model-
ing techniques to provide valuable insight for forming concrete hypotheses about 
the underlying ecological, biological, and geographical processes that generated the 
observed data [37]. Thus, the abundance of citizen-contributed wildlife data has the 
potential of shifting research paradigm in biological, ecological, and geographical 
studies from the traditional hypothesis-driven approach to the emerging data-
driven approach; for instance, scholars are promoting the idea of “data-intensive 
science” for biodiversity studies and “data-driven geography” [36–38].

2.2 The (dis)advantages of citizen science for collecting wildlife data

Citizen science has several advantages as an alternative mechanism for collecting 
wildlife data. Citizen-contributed data contain rich local information that spans a 
wide temporal spectrum because citizens, as local experts and sensors [20], have 
long been sensing and accumulating knowledge of their respective areas. Citizen 
science also has the potential to provide wildlife data over large areas, given that 
billions of networked human sensors are distributed across the globe. In addition, 
citizen science can provide timely updated wildlife data that are difficult to obtain 
and maintain through other techniques but can be easily elicited from citizens living 
in the local areas. Moreover, citizen-contributed data are much less expensive than 
traditional scientific data collection protocols (e.g., biological survey). In many 
cases, citizens contribute data purely voluntarily [20]. This low cost is of great prac-
tical significance in many real-world programs falling short of funding support.

Due to the above advantages of citizen science, it is possible to obtain timely 
updated wildlife data using citizen science over large areas. Citizen science thus has 
a great potential to support and sustain long-time wildlife population monitoring at 
large spatial scale (e.g., eBird) and provide wildlife data for wildlife habitat assessment.

In spite of the strengths, one should be aware of the shortcomings of the “citizen 
science” approach to wildlife data collection. For example, this approach cannot 
be used in areas with low population where sufficient local citizen observers/
informants are lacking. It is also not good for collecting data on evasive animals with 
little contact with humans. Most importantly, there can be data quality issues asso-
ciated with wildlife data contributed by volunteer citizens (i.e., non-professionals) 
which make the data challenging to standardize and analyze [17, 18]. The following 
sections detail some of the data quality issues, their implications for wildlife habitat 
assessment, and how GIS techniques (geovisualization, geospatial analysis, geo-
computation, etc.) can be adopted to tackle the issues toward reducing the impact 
of such issues on wildlife habitat assessment.

2.3 The data quality issues of citizen-contributed wildlife data

The quality of citizen-contributed wildlife data is the major concern when using 
such data for wildlife habitat assessment. The average citizens engaged in citizen 
science projects are not well-trained professionals; their voluntary data collection 
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actions are mostly constrained by internal commitment. Thus, citizen-contributed 
wildlife data may or may not be accurate [20, 39]. Three aspects of data quality 
are particularly relevant to the use of citizen-contributed wildlife data for wildlife 
habitat assessment: data creditability, positional accuracy, and spatial bias.

2.3.1 Data credibility

In order to be useful for wildlife habitat assessment, wildlife data (e.g., sight-
ings) reported by citizen participants need to be credible, that is, provide ground 
truth wildlife observations. Data credibility is affected by the characteristics of 
both the wildlife and the citizen observers (e.g., local residents). On the one hand, 
local residents often only observe wildlife that is active in the daytime. The target 
wildlife should be easily recognizable to reduce misidentification given that local 
residents usually have no training on species identification [17, 40]. On the other 
hand, local resident knowledge of the target wildlife, age, length of residence, and 
formal education also influence data credibility [41]. For instance, performance in 
georeferencing tasks differs between novice and expert citizen participants [42]; 
there exists both between-observer differences [43] and within-observer differ-
ences (over time) [44] in BBS participant bird-counting skills.

Various methods have been developed for increasing the credibility of citizen-
contributed wildlife data. Ref. [45] identified a total of 12 strategies that have 
been adopted by citizen science programs to increase their data credibility across 
different program stages including training and planning, data collection, and data 
analysis and program evaluation. As an example, eBird uses a two-part approach 
to assure data credibility during data entry [39]: automated data quality filters flag 
records for review based on observation date and geographic location; a flagged 
entry, once confirmed as legitimate by the observer, is then reviewed by a regional 
expert reviewer again.

2.3.2 Positional accuracy

Position of the wildlife data used for habitat suitability mapping needs to be 
accurate so that the locations can be used to accurately obtain the corresponding envi-
ronmental conditions at these locations from environmental data layers. Insufficient 
positional accuracy of wildlife data leads to mismatch between the locations of wildlife 
habitat use and the corresponding environmental conditions, and thus degrades the 
accuracy of environmental niche modeling and habitat suitability mapping [46].

Nonetheless, it is also important to note that the impact of positional accuracy of 
wildlife data on habitat suitability mapping depends on the spatial resolution at which 
suitability mapping is conducted. Mapping at high spatial resolution (e.g., using 
environmental data of 30 m × 30 m grids) definitely requires wildlife data of high 
positional accuracy that is comparable to the spatial resolution of the environmental 
data so that values of the environmental conditions at these locations can be accu-
rately extracted from environmental data layers. In contrast, for mapping at coarse 
spatial resolution (e.g., 1000 m × 1000 m grids), the absolute positional accuracy of 
wildlife data does not have to be very high as long as it is accurate enough relative to 
the spatial resolution of environmental data in use.

2.3.3 Spatial bias

Wildlife observations contributed by citizens are often concentrated more in 
some geographic areas than others (i.e., spatial bias) because observations made 
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by citizens are opportunistic in nature [23]. Unlike well-designed sampling or 
survey schemes which allocate observation sites in a way such that the geographic 
space and/or the environmental space are well covered by the observation sites, 
spatial distribution of the observation efforts of citizen volunteers would be 
considered neither random nor regular in the sense of sampling or survey design. 
One example to demonstrate this is wildlife sightings elicited from local residents. 
Local residents are not intentionally tracking wildlife of interest. Instead, they 
typically spot the wildlife en route to doing something else. The routes on which 
local citizens spot wildlife would be considered neither random nor regular but 
“ad hoc” [23]. As a result, wildlife sightings elicited from local residents are usually 
concentrated in areas with higher route accessibility.

Such spatial bias in wildlife data has a significant impact on environmental niche 
modeling and habitat suitability mapping for wildlife habitat assessment. Due to 
the spatial bias, citizen-contributed wildlife data might not be representative of 
the actual wildlife habitat use. The relationship derived based on the wildlife data 
thus might not well represent the underlying environmental niche. Spatial bias 
in citizen-contributed wildlife data, if not appropriately accounted for, would 
adversely affect the accuracy of wildlife habitat suitability mapping [47–49].

3. The roles of GIS

GIS is the ideal tool for conducting wildlife habitat assessment as it involves 
geospatial data. Besides providing an integrated environment for managing and 
manipulating environmental data layers and georeferenced wildlife data, GIS can 
also offer capabilities to remedy or address some of the data quality issues associ-
ated with citizen contribute wildlife data. Firstly, geovisualization can be used to 
facilitate wildlife data elicitation from citizen participants and improve positional 
accuracy. Secondly, based on the cause of spatial bias, spatial analysis can be used 
to compensate for the biased coverage in observation efforts. Lastly, geospatial 
computation techniques can be employed to address the computational challenges 
arising from analyzing very large volumes of citizen-contributed wildlife data.

3.1 Geovisualization to improve positional accuracy

In general, positional accuracy of wildlife data largely depends on the avail-
ability of positioning technology. Wildlife sightings can be accurately georeferenced 
with the aid of high-accuracy positioning techniques. For example, smartphones 
equipped with high-accuracy GPS units ensure generated data record is associated 
with accurate geographic coordinates. Nevertheless, the above observations hold 
only for citizen observers who are reporting or recording data at the time of sight-
ing wildlife occurrences in the field. In many cases, local residents (e.g., farmers) do 
not keep records of daily wildlife sightings or they simply do not have access to GPS 
units or smartphones. Most often, wildlife data are elicited from their memories 
long after the time of sighting [17, 18, 23, 40].

Wildlife data (e.g., sightings) collected from local citizens through interviews or 
questionnaire surveys often have position information with unsatisfactory accuracy 
[14, 15]. Descriptions of the locations of wildlife sightings are often imprecise or 
vague, particularly if a long time has lapsed since the actual sightings. Such incapabil-
ity partly results from the absence of an effective interviewing media (e.g., an intuitive 
and interactive representation of the natural environment where local citizens are 
active) that facilitates local citizens to recall and locate their sightings of wildlife. 
Ref. [17] collected distribution and abundance data of terrestrial tortoises from local 
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shepherds over 1 km × 1 km grid cells with the aid of topographic maps. However, 
it is difficult to accurately locate wildlife sightings on topographic maps for the local 
residents who had no training in map reading.

Geospatially enabled and user-friendly geovisualization interfaces could help 
improve positional accuracy of the wildlife data elicited from local residents [50, 51]. 
Geovisualization, particularly 3D geovisualization techniques, can be adopted to 
help local residents to recall and locate their sightings of wildlife and obtain wildlife 
data with more accurate positional information [40]. Given the flat 2D topographic 
maps, the local residents need relief interpretation skills to re-construct the 3D 
topography of the landscape; local residents can then orientate themselves and 
locate places on the landscape. But they often do not have much training in basic map 
reading skills, not to mention relief interpretation. 3D geovisualization can facilitate 
relief interpretation by producing a realistic and intuitive terrain representation [52] 
and improves visual search efficiency and navigation performance [53].

Geovisualization techniques as discussed above help improve positional accu-
racy of wildlife data at the very beginning of data generation. Sometimes, in cases 
where positional uncertainty does exist in wildlife data and is indeed of concern for 
wildlife habitat assessment, GIS-based methods have been developed to reduce its 
impact on the accuracy of wildlife habitat assessment. As an example, [54] pro-
posed a spatial sampling method for deriving probable wildlife occurrence locations 
from patrol records using heuristics based on data recording context and species 
ecology to increase the accuracy of habitat suitability mapping.

3.2 Geospatial analysis to tackle spatial bias

Many geospatial analytical methods have been proposed to account for the 
spatial bias in wildlife data. An AdaSTEM approach that exploits variation in the 
density of wildlife observations was proposed to accommodate spatial bias in 
citizen-contributed wildlife observations [22, 55]. The continent- or hemisphere-
wide study area is partitioned into rectangular spatial units (i.e., sub-areas) of size 
dependent upon density of wildlife observations. Environmental niches are mod-
eled with only observations in each sub-area. By training local models in sub-areas, 
instead of training a global model using observations over the whole area, this 
approach mitigates spatial bias in the overall data set to a certain degree.

Filtering samples in the geographic or environmental space (i.e., remove obser-
vations that are within certain distance of one another) is also applied to reduce 
spatial bias [56, 57]. This method is based on the heuristic that removing localities 
(i.e., field samples) that are within certain distance of one another would somehow 
balance the unequal sampling or observation effort. The key of this method is to 
determine the distance threshold properly.

If detailed information observation effort is available, such information can then 
be incorporated to correct for spatial bias. Spatial bias in wildlife observations was 
compensated for by weighting the observations with weights inversely proportional 
to the cumulative visibility at the observation sites, given that cumulative visibility is 
a good proxy of the underlying observation effort [23]. Here, cumulative visibility is 
the frequency at which a given location can be seen by observers from the routes the 
observers take. It can be computed based on a digital elevation model (DEM) repre-
senting the terrain and the routes using viewshed analysis, a common GIS function.

A FactorBiasOut method was developed to correct for spatial bias in species 
presence-only data for species distribution modeling with MAXENT [58]. This 
method first estimates an empirical distribution to approximate the underly-
ing but usually unknown sampling distribution that generated the presence-
only data. This approximate sampling distribution is then used to factor out 
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the spatial bias in presence-only data. This is achieved by feeding MAXENT 
with background data that have the same spatial bias as the presence data. For 
example, occurrence data of a target group of species that are observed by similar 
methods can be taken as the estimate of the effort information and thus are used 
as the background data.

Recently, a general representativeness-directed approach was proposed to spatial 
bias mitigation in citizen-contributed wildlife observations (i.e., samples) for habitat 
suitability mapping [59]. The key idea is to define and quantify the representative-
ness of samples and then properly weigh the samples to improve representativeness. 
Sample representativeness is defined as the “goodness-of-coverage” of the samples 
in the environmental covariate space, which in turn is measured by the similarity 
between the probability distribution of the samples in the covariate space and the 
probability distribution of all mapping units (e.g., pixels) within the study area. 
Spatial bias is then mitigated by weighting the samples toward increasing sample 
representativeness. The optimal weights that maximize sample representativeness 
are determined through an optimization procedure using a genetic algorithm.

3.3 Geocomputation to enable big data analysis

Citizen-contributed wildlife data are an important source of geospatial big 
data. In spatial analysis or modeling of such large volume of data (e.g., point 
pattern analysis, wildlife habitat assessment, and species distribution modeling), 
it is urgent to address the associated computational challenges. Geocomputation 
technologies could be utilized to address such computational challenges.

For example, over 100 million bird observations were added to the eBird database 
each year. Point pattern analysis is commonly used to discover patterns from such 
data. Existing point pattern analysis software tools are not able to handle geospatial 
big data efficiently. Cutting-edge geocomputation technologies such as cloud com-
puting and GPU (graphics processing units) computing can be leveraged to acceler-
ate point pattern analysis algorithms. The massively parallel computing powers of 
cloud computing and GPU computing effectively sped up point pattern analysis 
tasks on big data by a factor of hundreds [60, 61]. Given the significant acceleration 
brought by the geocomputation technologies, geospatial big data analysis tasks that 
once were computationally prohibitive can now be conducted in a timely manner.

4.  Integrating citizen science and GIS for wildlife habitat assessment:  
a Rhinopithecus bieti case study

A case study of mapping black-and-white snub-nosed monkeys’ (Rhinopithecus 
bieti) habitat suitability using R. bieti sighting data elicited from local villagers 
at Mt. Lasha in Yunnan, China, was presented to demonstrate the integration of 
citizen science and GIS for wildlife habitat assessment.

4.1 Species and study site

R. bieti is an “endangered” species on the IUCN (International Union for 
Conservation of Nature) Red List of Threatened Species [62]. R. bieti is endemic 
to the eastern Himalayas in northwest Yunnan and southeast Tibet, China, 
between the upper Mekong and Yangtze Rivers with 19 relatively isolated groups 
[63]. The monkeys use lichens (e.g., arboreal fruticose Bryoria and Usnea spp.) 
as their main food [64]. They prefer fir-larch forest at higher elevations in the 
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northern part of the range but also stay in mixed coniferous and broad-leaf 
forest at lower elevations (above 2600 m) in the southern range [65]. Across its 
geographic distribution areas, the habitat of R. bieti has undergone degradation 
(e.g., habitat reduction and fragmentation) in the past decades due to the growth 
of human population that mostly employed traditional modes of production in 
its distribution area (e.g., clear-cutting forests for farming, grazing and firewood 
consumption; hunting) [65].

The study site is Mt. Lasha area located in northwest Yunnan Province, south-
west China (Figure 1). Mt. Lasha is near the southern-most part of its geographic 
range [63, 65]. The 20.31 km2 study area is an important habitat for a group of about 
100 R. bieti individuals in 11 one-male multi-female units and two all-male units 
[66]. R. bieti is a significant species with a strong historic dimension in local com-
munities [63]. On the one hand, hunting poses the greatest threat to the monkeys 
[63]. Local residents had long been hunting the monkeys for various purposes. 
Even after the Chinese government has designated the species in the first class of 
protected animals since 1977, illegal hunting had not been stopped completely. On 
the other hand, R. bieti habitat use is closely related to forest-provisioned resources 
including food and shelter [63, 65]. In the study area, two historical events had 
significant impacts on these forest-provisioned resources: in 1979 the China 
Environmental Protection Act was enacted; in 2006, the Mt. Lasha area became 
a protected area as part of the Yunling Nature Reserve. The forestry policy imple-
mentations associated with these events in the study area directly affected local 
residents’ exploitation of the forests.

4.2 Data collection

4.2.1 Wildlife data elicited from local villagers

Sightings of R. bieti were elicited from local villagers for assessing the habitat of 
the monkeys in the study area across historical periods. Local villagers whose liveli-
hoods are closely dependent on ecosystem services have long been living in the local 
area and accumulated information about R. bieti habitat use. Sightings of R. bieti 

Figure 1. 
Location of the study area: (a) Mt. Lasha in northwest Yunnan, China; (b) a 3D perspective image of the Mt. 
Lasha area; and (c) a family of R. bieti in their natural habitat (extracted from [40] with permission from 
John Wiley and Sons).
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were elicited from local villagers through interviews. A 3D geovisualization tool was 
adopted to aid the interviews by using it to help the local villagers recall and locate 
where they sighted the monkeys more accurately.

R. bieti sightings were collected through structured interviews with local villag-
ers (Figure 2). Sightings of the monkeys and activity routes of the villagers were 
elicited. The interviews were conducted using 3dMapper, a 3D geovisualization GIS 
tool that uses high-resolution DEM and satellite imagery to produce an intuitive 3D 
view of the study area [67] (freely available from solim.geography.wisc.edu). The 
user can zoom, pan, and easily draw points, lines, or polygons over the 3D scene. 
We introduced this geovisualization tool to the villagers to help them identify loca-
tions where they had sighted the monkeys and the daily routes they took in the area. 
The villagers also recalled the year and month when they sighted the monkeys or 
took the routes. The year of R. bieti sightings recalled by the interviewees was cross-
checked with and refined with reference to timing of major events such as national 
policy implementations, date of marriage and child born, etc. and the month to 
seasonal activity patterns in the area such as farming and grazing. Information on 
where and when they sighted the monkeys was recorded as polygons. Information 
on the routes they took and the frequency with which they took each route was 
recorded as lines.

Geovisualization interview sessions were carried out by one biologist and one field 
assistant who were very familiar with the study area during July and August 2010. 
Sixty-eight local residents including herdsmen, hunters, and farmers who had exten-
sive experience in the mountains from all five nearby villages were interviewed. The 
majority of them are aged between 30 and 60 (Table 1). The elicited R. bieti sightings 
and activity routes of the villagers cover a temporal span from the 1950s through 
2010. Constrained by the availability of environmental data needed for habitat assess-
ment, only R. bieti sightings in three historical periods (1973–1981, 1987–2005, and 
2006–2010) were used for habitat assessment (see [40] for details) (Figure 3).

4.2.2 Environmental data

Environmental factors impacting R. bieti habitat use include terrain, water source, 
shelter and food, and human-posed disturbance [65, 68, 69]. Accordingly, the 
following environmental data layers were used in habitat assessment (habitat suit-
ability mapping) for R. bieti in the study area [23, 40]: elevation, slope gradient, slope 

Figure 2. 
Geovisualization interview sessions with the local residents using 3dMapper: (a) the local residents locating 
monkey sightings and activity routes and (b) a 3D scene of a small portion of the study area on which the local 
residents outlined monkey sightings and routes (extracted from [40] with permission from John Wiley and 
Sons).



11

Integrating Citizen Science and GIS for Wildlife Habitat Assessment
DOI: http://dx.doi.org/10.5772/intechopen.83681

aspect, distance to river, distance to village or road, and vegetation type. Interested 
readers can refer to [40] for details on how to obtain these environmental data layers.

4.3 Accounting for positional uncertainty and spatial bias

Data elicited from local villagers impose two challenges, namely positional 
uncertainty and spatial bias. First, local villagers often recall R. bieti sightings in 
the form of “I saw the monkeys over this area.” Clearly, “over this area” can be 
depicted using a polygon, but this does not mean that the monkeys showed up at 
every location in the polygon area and certainly not at an equal probability within 
the polygon. Thus, taking all locations in the polygon as sightings is not appropriate. 
The question then is how to obtain locations that are representative of the actual 
presence of wildlife in the area outlined by the local villagers. The second challenge 
is the spatial bias in the elicited R. bieti sightings due to local villagers’ opportunistic 
observation effort. For example, multiple sightings of monkeys at one location 
by many villagers do not necessarily mean that the location is highly preferred by 
the monkeys; it might be that the location is easily visible from multiple activity 
routes. Thus, every time a monkey shows up at this location, it is spotted by some 
villager(s). On the other hand, a monkey that shows up at locations that are pre-
ferred by monkeys but less visible to the villagers will have a lesser chance of being 
spotted. This spatial bias must be compensated for when using the elicited R. bieti 
sightings for wildlife habitat assessment.

Geospatial analysis methods provisioned by GIS were adopted to address the two 
challenges. First, a frequency sampling strategy [23, 70] was applied to reduce the 

Age 19–30 31–40 41–50 51–60 61–70 71–78

Count 7 12 16 18 10 5

Table 1. 
Age composition of the interviewed local villagers.

Figure 3. 
Sightings of R. bieti and activity routes elicited from the local residents through geovisualization interviews:  
(a) 1973–1981 period; (b) 1987–2005 period; (c) 2006–2010 period (extracted from [40] with permission from 
John Wiley and Sons).
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position uncertainty in sighting polygons provided by local villagers and to identify 
the representative locations for R. bieti presence within each polygon. It is assumed 
that locations at which values of environmental conditions are most frequent over 
the polygon area would approximate the locations of actual presence best. Under 
this assumption, the frequency sampling strategy implemented in GIS was applied 
to locate the representative locations within a polygon. Here, only the general idea 
was outlined as above; full details on implementing the sampling strategy in GIS 
can be found in [23, 70].

Second, the spatial bias was compensated for by inversely weighting each 
representative presence location with cumulative visibility of the location from the 
routes taken by local villagers [23]. In this particular case study, spatial bias in the 
elicited R. bieti sightings was a result of the non-random and uneven distribution of 
local villagers’ observation efforts constrained by activity routes and terrain (as dis-
cussed in depth in Section 2.3.3). Thus, cumulative visibility was treated as a proxy 
of the underlying observation effort and can be incorporated to compensate for 
spatial bias. The cumulative visibility of a location can be computed in GIS based on 
a DEM and the activity routes of local villagers [23]. The efficacy of the frequency 
sampling strategy to reduce positional uncertainty and the visibility-weighting 
scheme to compensate for spatial has been demonstrated in [23].

4.4 Habitat assessment

A kernel density estimation-based method [23, 71] was applied to derive the 
relationship between R. bieti habitat suitability and environmental conditions. 
This method estimates a probability density function representing the probability 
distribution of wildlife presence over the gradient of each environmental factor 
based on the values of the environmental factors over the presence locations. In 
estimating the probability density functions, presence locations are weighted by the 
in situ cumulative visibility from activity routes of the local villagers to compensate 
for spatial bias. The probability density functions are then normalized to the range 
of [0, 1] to represent the relationships between habitat suitability and individual 
environmental factors (Figure 4). The overall habitat suitability considering all 

Figure 4. 
Suitability-environment relationships derived from elicited R. bieti sightings in each historical period. Aspect 
group 1: 0–45° (starting from north), 2: 45–90°, 3: 90–135°, 4: 135–180°, 5: 180–225°, 6: 225–270°, 7: 270–315°, 
8: 315–360°. Vegetation type 1: evergreen coniferous, 2: pasture, 3: yunnan pine, 4: farmland, 5: deciduous 
broadleaf (extracted from [40] with permission from John Wiley and Sons).
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environmental factors is determined by integrating the relationships based on a 
“limiting factor” principle (see [23] for full details of the method). Computing 
the overall habitat suitability at every location (pixel) in the study area resulted in 
habitat suitability maps as shown in Figure 5.

Across the three historical periods, high suitability habitats were in forests 
(Figure 4d) at mid-to-high elevation range (Figure 4a) on the northeast hill slopes 
(Figure 4c). Overall, high suitability habitats shrank in the 1987–2005 period com-
pared to the previous period. As an example, the area outlined on Figure 5b in the 
1987–2005 period is of much lower suitability compared to the 1973–1981 period. 
This might be a result of the introduction of new village settlements and roads in 
that area in the 1987–2005 period which induced significant human disturbance.  
R. bieti habitats were recovering in the 2005–2010 period. The outlined area recov-
ered to higher suitability in that period; this might be attributed to the monkeys 
getting used to proximity to villages and roads (Figure 4f).

The derived relationships between R. bieti habitat suitability and individual 
environmental factors (Figure 4) confirmed the recovering trend in the 2006–2010 
period. The elevation range of high suitability habitats in the 2006–2010 period 
shifted back to higher ranges close to those in the 1973–1981 period (Figure 4a). 
The ranges of distance to rivers and distance to village or road corresponding to 
high suitability habitats also shifted back to similar ranges as in the 1973–1981 
period (Figure 4e, f). These were potential evidences that conservation practices 
initiated by the Yunling Nature Reserve have restored R. bieti habitat in the area.

5. Conclusions

Wildlife data required for wildlife habitat assessment can be difficult and expen-
sive to obtain with traditional data collection methods (e.g., biological survey, geo-
graphic sampling), especially for conservation programs with limited budget support 
in remote and poor areas. Citizen science offers a cost-effective way of collecting 
wildlife data to sustain such programs. Nevertheless, average citizens are non-
professionals and their wildlife observation efforts are un-coordinated. Thus, wildlife 

Figure 5. 
Habitat suitability maps predicted for the study area using elicited R. bieti sightings in each historical period 
(a) 1973–1981 period; (b) 1987–2005 period; (c) 2006–2010 period (extracted from [40] with permission from 
John Wiley and Sons).
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data contributed by citizens may be subject to data quality issues such as positional 
uncertainty and spatial bias. This chapter provides an overview of citizen science as 
a means of collecting wildlife data, GIS-provisioned geovisualization, and geospatial 
analysis techniques for tackling the data quality issues of citizen-contributed wildlife 
data, and the integration of citizen science and GIS for wildlife habitat assessment. A 
case study of mapping R. bieti habitat suitability using R. bieti sightings elicited from 
local villagers in Yunnan, China, was presented as an example to demonstrate the 
usefulness of integrating citizen science and GIS for wildlife habitat assessment.
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